Calcium Isotopic Evidence for Vulnerable Marine Ecosystem Structure Prior to the K/Pg Extinction.
نویسندگان
چکیده
The collapse of marine ecosystems during the end-Cretaceous mass extinction involved the base of the food chain [1] up to ubiquitous vertebrate apex predators [2-5]. Large marine reptiles became suddenly extinct at the Cretaceous-Paleogene (K/Pg) boundary, whereas other contemporaneous groups such as bothremydid turtles or dyrosaurid crocodylomorphs, although affected at the familial, genus, or species level, survived into post-crisis environments of the Paleocene [5-9] and could have found refuge in freshwater habitats [10-12]. A recent hypothesis proposes that the extinction of plesiosaurians and mosasaurids could have been caused by an important drop in sea level [13]. Mosasaurids are unusually diverse and locally abundant in the Maastrichtian phosphatic deposits of Morocco, and with large sharks and one species of elasmosaurid plesiosaurian recognized so far, contribute to an overabundance of apex predators [3, 7, 14, 15]. For this reason, high local diversity of marine reptiles exhibiting different body masses and a wealth of tooth morphologies hints at complex trophic interactions within this latest Cretaceous marine ecosystem. Using calcium isotopes, we investigated the trophic structure of this extinct assemblage. Our results are consistent with a calcium isotope pattern observed in modern marine ecosystems and show that plesiosaurians and mosasaurids indiscriminately fall in the tertiary piscivore group. This suggests that marine reptile apex predators relied onto a single dietary calcium source, compatible with the vulnerable wasp-waist food webs of the modern world [16]. This inferred peculiar ecosystem structure may help explain plesiosaurian and mosasaurid extinction following the end-Cretaceous biological crisis.
منابع مشابه
Partial collapse of the marine carbon pump after the Cretaceous-Paleogene boundary
The impact of an asteroid at the end of the Cretaceous caused mass extinctions in the oceans. A rapid collapse in surface to deepocean carbon isotope gradients suggests that transfer of organic matter to the deep sea via the biological pump was severely perturbed. However, this view has been challenged by the survival of deep-sea benthic organisms dependent on surface-derived food and uncertain...
متن کاملTHE CAUSE OF BIOMASS EXTINCTION AT THE FRASNIAN-FAMENNIAN BOUNDARY, THE KERMAN PROVINCE SOUTHEASTERN, CENTRAL IRAN
About 35 samples were collected from lower and upper parts of the proposed Frasnianamennian boundary in three sections of Upper Devonian marine sediments of the Kerman province. The biostratigraphical and geochemical studies indicate that about 45% extinction of brachiopods probably caused by the Frasnian-Famennian bioevents, which is slightly higher than thr rate of Devonian-Carboniferous exti...
متن کاملK-Pg extinction patterns in marine and freshwater environments: The impact winter model
[1] The Chicxulub asteroid impact produced massive extinction in terrestrial environments most likely through an intense heat pulse and subsequent widespread fires. Aquatic environments were shielded from this heat and fire but nevertheless showed massive extinction in marine environments and, for reasons unexplained, far less extinction in freshwater environments. Extinction in marine environm...
متن کاملBiogeochemical significance of pelagic ecosystem function: an end-Cretaceous case study.
Pelagic ecosystem function is integral to global biogeochemical cycling, and plays a major role in modulating atmospheric CO2 concentrations (pCO2). Uncertainty as to the effects of human activities on marine ecosystem function hinders projection of future atmospheric pCO2 To this end, events in the geological past can provide informative case studies in the response of ecosystem function to en...
متن کاملOrganic carbon fluxes and ecological recovery from the cretaceous-tertiary mass extinction
Differences between the carbon isotopic values of carbonates secreted by planktic and benthic organisms did not recover to stable preextinction levels for more than 3 million years after the Cretaceous-Tertiary mass extinction. These decreased differences may have resulted from a smaller proportion of marine biological production sinking to deep water in the postextinction ocean. Under this hyp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current biology : CB
دوره 27 11 شماره
صفحات -
تاریخ انتشار 2017